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THE HYDRODYNAMIG THEORY OF DETONATION*

By Heinz Langweiler
SUMMARY

The author derives equations containing only directly
measurable constants for the quantities involved in the
hydrodynamic theory of detonation. The stable detonation
speed, D, 1is revealed as having the lowest possidble value
in the case of positive material velocity, by finding the
minimum of the Du curve (u denotes the speed of the gases
of combustion). 4 study of the conditions of energy and
impulse in freely suspended detonating systems leads to
the disclosure of a rarefaction front traveling at a lower
speed behind the detonation front; its velocity is com-
puted., The latent energy of the explosive passes into the
steadily growing detonation zone - the region between the
detonation front and the rarefaction front. The conclu-
sions lead to a new definition of the concept of shatter-
ing power. The calculations are based on the behav10r of
trinitrotoluene.

INTRODUCTION

The chemical change in an explosive substance, such
as the propelling charge in a firearm, generally takes
rlace at a linear combustion speed in fractions of meters
per second, whereby thig rate at which the conversion =zone
renetrates the explosive substance is a function of the
gas pressure,

Berthelot (reference 1), in 1881, discovered the pe-
culiar fact that under suitable conditions, substantially
higher conversion speeds are feasible. In his experiments
with explosible gas mixtures in long tubes, he ascertaincd
propagation speeds in the conversion zone of several kilo-
meters per second, whereby this speed remained constant
over the entire conversion distance and even remained un~
affected by the initial gas pressure.

*"Beitrag zur hydrodynamischen Detonationstheorie." Zeit-
schrift fur technische Physik, vol. 19, no., 9, 1938,
PPe 271283,
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Berthelot and Dixon essayed a molecular kinetic eX=
planation of the detonation processes and, in fact, achieved
with many gases, practical values for the detonation speed.

The purely thermodynamic and aerodynamic treatment of
the detonation process which disregards special molecular
concepts, is attributable to Schuster (reference 2), and
Chapman (reference 3), who utilized the findings obtained
by Riemann (reference 4), and Hugoniot (reference 5) in
the treatment of the linear compression shock in gases.

The extension of these macroscopic theories to in-
clude solid explosive substances, is due to Jouguet (refer-
ence 6) and R. Becker (references 7 and 8), the latter
dealing largely with the cause of detonation stability.

He proves, with the help of the thermodynamic entropy laws,
the validity of Chapman?'s term for detonation speed.
Schmidt's more recent studies of ‘the detonation process of
s0lid explosive substances (reference 9), containing a
wealth of experimental material, are particularly well-
suited to prove the wvalidity of the hydrodynamic theory of
detonation,

However, there is a gap in the orthodox theory. One
obtains for the combustion zases behind the detonation
front, a speed in the direction of the advancing front.
The consequences of the existence of such a speed on the
total system, are not considered for the reason that only
the measurable quantity of this speed of the combustion
gases is of influence for the detonation spoed (reference
10). (Schweikert refers %o this difficulty, bdbut is of the
opinion that it would void the whole hydrodynamic theory
of detonation.)

To iilustrate +the defect of the present theory, the
derivation of Chapman and Becker is briefly reviewed.

CHAPMAN AND BECKER EQUATIONS

A tube of 1 square centimeter section contains an ex-
pPlosible mixture under pressure Pos dengity 'po, specif-

ic voilume _ v_, and temperature T, (fige. 1),

The front of the conversion moves toward the right in-
to the explosive at the empirically constant detonation
speed D, In zone F the chemical change takes place,
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the produet of which, the gases of combustion, also moves
toward the rlght at speed u.

For an ob erver,'at rest relative to the combustiomw
gases, hence also moving rightward at speed wu, the pres-
sure P,, density p,, specific volume Voo and temper-

ature Ty, prevail. Certain relations must exist between

these macroscopic quantities which result from the general
physical laws governing the preservatzon of energy, im-
pulse, and mass.

Visualize an observer in the conversion zone F moving
at detonation speed toward the right. To him the process
of conversion must appear stationary if D 1is constant.
The explosive moves at speed D into zone F from the
right, while the combustion gases leave the zone at speed
D - u toward the left.

The preservation of the mass gives:

I

D p, (D - u) P, (1)

or

Dv1=(D-‘u.)Vo

The momentum of the explogsive substance moving into
the zonc per second from the right is

B

0=p0DD

The momentum of the combustion gases leaving the
zone per second is

B, = p, (D= u) (D= )

The difference Bo - B1 -‘of beth momentums must be
equal to the effective pressure difference. Hence,

Bo = By =P, = Pg

and, in connection with equation (1), the momentum egua-

tion e

pab:%Du} (2)

(p1 - Py) Vo = D u
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Prom the right, four different forms of energy enter
the zone per second:

1. The latent chemical energy. If this amounts to
U per unit mass, the leftward moving energy per second is:

P, D U
2. The kinetic energy
2
5p, DD

3, The heat contents of the undecomposed explosive
gas '

Po D Cy To

if Cy denotes the specific heat at constant volume per

unit mass.
4, The external energy
Py D

Leaving the conversion zone per sccond, toward the
left, are:

1., The kinetic energy of the combustion gases:

py (D = u) (D= w)

aelisy

2. The heat content of the combustion gases
p, (D = u) ey Ty
3, The external encrgy

(D - u)

D
<1

The law of the preservatidn of energy therefore gives
the next equation

Po DU+ £ p D D% + p, D oy, Ty + Py D }
=Llp, (@ =w) (D~ w? SES
P (D - u) ey T, + 1, (D ~ u) J
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or, in conjunction with equations (1) and (2) A
: O S v
I R oyl e Ty .
5 (o, + ) (vg = v ) =c (T =T (4)
whereby .
v Vo = 7y '
and
‘ » L] ' .
D= v, / P17 2o L- (6)
Vo = U,

as is directly obtainable from equations (1) and (2).

Now the substitution of p, and v, or Db, and Vo
for T, and T, in equation (4) through the phase equa-

tions, gives the relation between p, and v,, with the
constants of the original gas as parameters.
Thig relation between and Vv is the so-called

1 1
"dynamic adiabatic" or Hugoniot curve, named after its in-
ventor (fig. 2).

Accordingly, if in a cas of original state, po and
Vo, @ conversion zone travels at constant speed - saying
nothing at present about the magnitude of this speed - the
state of the combustion sgases is represented by some point
on the Hugoniot curve. According to equation (6) every
point has a certain speed of propagation D and, accord-
ing to equation (5), a ocertain speed of combustion gascs.

For all points above G, there is a speed of combus~
tion gases in the gsame direction as that of the propaga-

‘tion of the conversion zone. This conversion is associated

with a marked prcssure rise and passes very quickly. If
the conversion of the explosive has the characteristics of
this zone, it denotes detonation.

If the explosive mixiture burns - i.e., if the speed
of transformation is low, whereby the combustion gas pres-—
sure. p, decreases relative to p, and the speed of the
combustion gases is contrary to the direction of combus-
tion - then the stage of the combustion gases is represent-
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ed by the curve below K. The zone G - B cannot be prac-
tically realized.

So, even though it is true that at detonation the stasge
of the combustion sgases, and hence the magnitude of detona-
tion sveed, is characterized by a voint on the Hugoniot
curve above G, this still does not determine which point
defines the actually occurring detonation speed,

The only stabdble point on the curve, accordiang to
Chapman and Becker, is the contact point J of the tangent
from A,

For angle o of the tangent, it is

o

n e
il SR
‘V'o b

tan o =

<l

1l

or, according to equation (6),

D = Yo Vi tan_?q‘)_ ’ (7)

Since tan @ 1is computable from the dynamie adiabatic,
expressions for D and w conitaining only macroscopic,
thermodynamic equatiomg can be adduced.

These are?

(8)
/LR om (9)
M

The constants
Xy 7ratio of specific hLeat '
R, sgas constant
¥, molecular weight

apply to the temperature T of the combustion gases.

1

Forming the difference a = D - u gives
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(10)

/
But this expression presents;the magnitude of the velocity
of sound in the combustion gases.

Accordingly, it may be stated: The detonation speed
is given through the gum of the speed of combustion gases
and sonic velocity in the combustion gases.

The detonation temperature necessary for computing D
is obtained from the specific heat and the heat content of
the explosive wheredby the temperature rise due to the den-—
sity increase on passage through the wave front is still
accounted for through the dynamic adiabatic curve. The
detonation speeds computed this way are in good agreement
with practical experience, honce affording conclusions re-—

garding the fundamental proof of the conc ept.

The hydrodynamic derivation of formulas for solid and
ligquid explosives follows the same method, save that the
specific volume of the gas molecules must be allowed for,
as 1s customary in internal ballistics, by the introduc-
tion of Abel's equation, a modification of van der Waal's
form,.

Quantitative colculation of the detonation speed of
solld explosives being out of the question, on account
o'f ignorance of the covolume of gases at high pressures
and temperatures, the measured detonation speed is used
instead for calculating the covolumes.

In any case, the derived expressiong indicate an eX -
perimentally conflrmed relationship with density Por

which does not obtain for the zas formulas (8) and (9).
DERIVATION OF WEW EXPRESSIONS

The first task is the derivation of expressions for
detonation speed D, and material speed <1, which are
free from the concent of detonation temperature and con-
tain solely constants directly amenable to measurement.

The derivation is to be carried out direct for solid and
liguid explosives. By disregarding the covolume, the equa-—
tlions become valid for gaseous explosives.
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In the follow1ng,varlous concepts of internal ballis-
tics are employed.*

The combustion of s quantity of explosive of weight
L in a closed bomb of constant volume V crecates a ter-
minal pressure pyp, called explosion pressure.

For the covolume of gases per unit woeight «, Abells
equation gives

- Y *
Pg = V - oL
or, for the specific weight of the gases % = Pgs
Po
= e e 11
P £ 1 - « Po ( )

f and o can be determined from pressurc measurements in
the bombd by means of eguation (11).

The phase equation

: q T
pp (1 = a py) = —— Po

digscloses that the experimentally defined constant £ Thas
the value

S —— | (12)

with Tg, explosion temperature. Ty 1is the temperature

of the explosion gasecs existing when combusgtion takes place
without exteranal energy input; i.e., for instance, in the
closed bomb,

The cas under explosion pressure is to be adiabatical~
ly released up to zero precsure by means of a plunger. With
k as exponent of the adiabatic release, the energy per—
formed on the piston is

*H. Langweiler, Z.f.d. ges. Schiess- u. Sprengstoffwesen:
Development and experimental check of closed mathematical
expressions for internal ballistic constants, particularly
for the maximum gas pressure and the muzzle velocity. (To
be pudblished.)-
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pg (V = a L)
ko= 1-

(13)

which follows directly by intezration of the adiadatic
curve, according to Poisson. The energy capacity A of
the gag in the form of equation (18) is called the poten-
tial gas energy. But this energy A must be equal to
the latent energy contained in the quantity of explosive
L 'before combustion., If this amount per unit weight is
U, we have

pE (.V - L)
A = S 5 LU
k - 1

or, with observance of equation (11):

£

|

(k = 1) U

¥ o= 1 + £ 14
: 5 (14)

Constants f and U each have the dimension of an
enerzgy (m kg) per unit weicht (kg), hence the dimension
of a length (m). The exwponent Xk 1is an average value;
but differs very little from that ( = 1 percent) computed
from the specific heat, as will be seen from the examplc
later on.

Other than density Py of the explosive and covolume
@, of the detonation azases, the cxpression for the deto-
nation speed is to contain only the measuradble constants
U a,nd. f.

Figure 3 is another gcketch of the detonation process.
For the sake of clearness the two sides of the conversion
zone carry pistons which at pressure p, and D act on
the static oxplocive or the moving combustion gases. The
conception of gsuch pressure forces is necessary as other-
wise no stationary phase would be counceivable.

L As the conversion gzone moves toward the right for a

distance D, the combustion gases move for a distance

u, in the direction of the advancing zone. Since the
pPressure », is t0 be constant within the combustion gases,
the piston "A 1likewise nust travel a distance u, toward
the right,
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The mass, impulse, and energy -equations for an ob-
server moving with the detonation front, can be written
in known manner. The pressure P, being very small rela-
tive to the detonation pressure D, (po = 0 for solid ex

plosives), its effect can be disregarded.

Mass: .
Dpy, = (D=u)p (15)
Impulse:
Po
pl _-g-—.'Du (16)

(g 1is acceleration of gravity)

Energy:

Dp, U+ - Py D D2

28
p, (D-u) (1-a, p,) : L
= T (17)
+ 5z P, (D-w) (D-u)® + p (D-u) J

The lefit-hand side of the last equation gives the la-
tent and kinetic energy of the explosive movément ner sec-
ond into the zone from the right.

Behind zone F, leftward, a gas space of magunitude
D - u per second is created, wherein the pressure p,
prevails because the piston A,  as seen from the detona-
tion front, moves a distance D -~ u to the left per sec-—
ond. Now the potential gas energy of this newly created
space is (similar to equation (13)):

1 (D ~ u)—ﬁl - @ Pl)
k - 1

The factor (1 - a, p,) accounts for the reduction in gas
space due t0 the covolume of the gases.

The total gas space moves at a speed (D - u) toward

i
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- the left. Its additional kinetic energy, accordingly, is:

. - o e - - - -
gz P, (D =w) (D= )
As seen by the observer, the work D, (D - u) is per-

formed on the plunger. The three forms of energy appearing
per second on the left side of the detonation front must,
together, equal the energy per second entering from the
right. The result is equation (17).

Quantities p, and p, may be substituted herein

through (15) and (16). With consideration of U (k - 1) =
f, we have:

(k - 1) D%+ f g =k=1(p.q)

2
+@ew)u (1-p, xR ) (k= 1)u (D= w)

and through direct calculation

5.1 (f&.m:l) (18)
l - a, Po u 2

or abbreviated:

N=1 - %, Py (19)

For negligible cowvolume T = 1. In
-l (fg k2l ) 20
D = M " + ) u ( )

the detonation speed D is shown as function of the sole
variable wu, namely, the material speed,

Since f has the dimension of length and g 1is the
acceleration, the validity of the dimension is proved.

FPizure 4 illustrates the function (20). The existence
of a minimum is immediately avparent. The correlated pair
of values is obtained by differentiation of (20):
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4D _ _~_J=<_;.i_‘_£_,.l<_-_i_l>
duﬁo—'ﬂ ’ ua 2
Hence
o
- 2 21
u w//k T f g ( )
and, with (20)
D = % J2(k + 1) £ g (22)
or
1
D = T (k + 1) u (23)

Equations (21) and (22) are equivalent to Chapman's
equations (8) and (9) as closer examination shows. Aside
from the effect TN of the covolume, they merely contain
the constant f known from bomb tests and the latent en-
eregy U, ©because k itsgelf ig =1 + f/U.

From the agreement of the value of the lowest possible
detonation speed, according to (20), with that derived as
stable from the Hugoniot curve, the following conclusion
can be drawn?

The constant detonation speed ultimately attained in
a detonation process, is the lowest conversion speed pos-—
sible, according to the laws of physics, provided that a
sufficiently strong initial ignition creates a combustion-
gas speed in the direction of the advancing zone of {frans-
formation.

The magnitude of the sonic velocity in the combustion
gases is determined as follows: If E is the modulus of
elasticity of the medium, the sonic velocity a in any
medium follows the law:

/ E
a = ____§
P

The modulus of elasticity for ideal gases is E = k p ob-
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tained by differentiation of the adiabatic curve
D (l) = constant
p
But with
/1 k .
P, <5: - a1>t'= constant

as adiabvatic curve of the combustion gases, its modulus of
elasticity becomes:

Accordingly, the velocity of sound in these gases is

k Z
a = ~// Lt ) (24)
P, (1 = a, Py
and, after replacineg 1 and P by equations (15) and
(16) 1 1
0 = / ¥ u (D~ u)

: D
/ 1l - @, Pg o

and, with the abbreviation T = 1 - %y Py ¢
a=.1ﬁ(k+1)u-.u (25)

On comparison with equation (23), it is seen that the
velocity of sound is equal to the difference between deto-
nation speed D and combustion-gas speed u, that is:

'a'=D-ul ) ’ (26)

The result is in accord with Chapman and Beckerl!s findings.
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At sonic velocity itself, the -equation is:

a = <E~i—l - l) u

or

(ke *+ 1 2 27
a = ( N l) J/ P f g (27)

The detonation pressure p, can be computed according to

equation (16): /

p:%’]—Efpo (28)

Expressing the gas pressure of the explosives result-
ing in the original volume under the slow combustion of
the explosive, again as explosion pressure pg, and the

covolume for this pressure with ap, Abel's equation

"is applicable.

From equation (28) then follows:

and with it, the important result that the detonation pres-
sure is twice ag great as the explosion pressure, disregard-
ing for the time being the effect of the difference in co-
volume, For gases, it is exactly:

_pl = 2 pE . (30)
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For the combustion-gas density, it is, according to
- equation (15), after insertion of the D and u value:

k+ 1 S .
S 31
Py =53 1=H Po . (31)

The detonation temperature T, can be computed in

the following manner. The combustion gases follow the
Phase equation:? . -

1 ' R
b, E: = “1) =M T,

But, according to equation (12), it is:

R
£ = &
u E
and consequently,
E = e
M Tz

Hence,

T, = 1f T (32)

p, and P, may be expressed with D and u:

Po Pu /D ~u

T1= 7B POD -C(;l)TE

Substituting equations (21) and (22) for D .,and wu,
we have the simple relation:

T, = _ 2k _ T ‘ (33)

—

The detonation temperature T is, independent of

1
the covolume of the combustion gases, greater by the fac-
tor EEELI than the explosion temperature Ty of the ex-

plosive.
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The aim of the first problem, the derivation of the
quantities incident to the detonation of any explosive,
containing ~ besides covolume - only the constants f and
U, 1is herewith reached. Obviously, equation (22) is ap-
plicable for the determination of covolume « of the com~
bustion gases, in case the detonation speed ﬁ is meas—
ured. ‘

THEORETICAL PROOF OF THE EXISTENCE OF

AN INCREASING DETONATION HEAD

The second problem is the study of the consequences
of a stationary detonation process illustrated in figure
3. The assumption of a plunger A acting externally at
magnitude of detonation pressure p and moving at com-

bustion-gas speed u in direction of the moving detona-
tion front is, as already stated, necessary for the expla-
nation of the stationary processes in the transformation
zone F,

At the initiation of a detonation process, the plunger
A 1is represented by the nascent gases of the initiator.
The energy of these gases, however, would only suffice to
drive the detonation front a very short way into the ex-
plosive, Once the action of the initiator gases has stopped,
the cause for the positive speed of the combustion gases
muast naturally ceasec and the detonation come to an end.

Riemann stated that a shock wave in gases could be
maintained permanently only through external forces. But
since experiments indicate that a detonation, once initi-
ated, travels with great constancy over any long distance,
the explanation of the detonation process is in need of a
supplement, This necessity becomes especially evident in a
simple impulse consideration comprising a whole detonating
system,

Visualize a long column of explosive freely suspended
horizontally. Ignition is to take place at one end. Af-
ter the detonation wave has reached the other end, the
then~formed gas of pressure P, and density p1 would

have to move as a whole at material velocity u in the
direction of the detonation froant, Such a motion isg, of
course, impossible, because no external forces which could
cause a total impulse, act on the freely floating explosive.
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The effect of the initial charge can be disregarded,
s¢nce the column may be of any 1ength.

An enerzsy balance comprising the whole system al°o
shows the incompleteness:of the initially employed presen-—
tation; for the total energy of the combustion gases (po~
tential and kinetic) of a freely suspended detonating col-
umn of explosive is, according to calculation, greater
than the latent energy originally existing in the explosive.

In the calculation this dlfference is covered by the
external energy of the plunger, but in the absence of ex-
ternal energies, as is the case for a column of explosive
left to itself, no constant detonation speed would proba-
bly exist, '

The difficulties introduced with the impulse and en-
ergy balance of explosive systems left to themselves, must
be voided by assuming a second wave front in the combus-
tion gases. The speed w of this front relative to the
quiescent explosive, must -be greater than the speed of the
gases u, but smaller thoan the detonation speed. On pass-
ing through this front the detonation pressure itself must
drop to a wvalue below that of the explosion pressure.

Figure 5 illustrates the process of detonation of an
explosive substance on the assumption of a rarefaction
front advancing at lower speed behind the detonation front,
This rarefaction front moves at subsonic velocity relative
to the combustion gases; that is, it is debatable, while a
rarefaction shock of supersonic velocity would be imposgsi-
vle.

A - B is the explosive column made to detonate. Ig-
nition takes place at A, where a solid abutment rests relw
ative to the original explosive and which is therefore un-
able, in contrast to a moving plunger, to perform work on
the total system.

The significance of this "damming up" is referred to
elsewhere. For the present, it may be stated that the
omission of A modifies the speed of the rarefaction front
but not the detonation speed. :

F, -is the detonation front wherein the pressure
rises from P, to the value Py e F, indicates the rare-

faction front, within which p1 drops to P, and the ma-—
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terial velocity changes from value . u to zero. Nothing
is said about the form of the rarefaction front other than
assuming that its extent is small compared to the distance
F, F,+ The region between the two fronts is called deto-

nation head, and the distance Fi Fa’ the head length,

Fisure 5 indicates how, as a result of the difference
in speed of the fronts, the length of the head continues
to grow with time and, hence, with the detonation distance.
Since the abutment A is fixed, the gas behind the rare-
faction front F, must be at rest; i,c., its material ve-

locity must become zero in case the process in the present-
ed form is to be stationary. Suppose the values for this
new stage of the combustion gases are! D,, Pg, Cp-

At present the combustion-~gas speed u is confined
within the head ¥, F,. Before front F;, and behind

front F, the material is quiescent. A4s the head becomes

longer in unit time the momentum of the gases within the
fronts increases with respect to time. The cause for this
growth in momentum lies in the pressure difference Pa -

P, existing at either side of the head. The pressure D,

must be lower than the oxplosion pressure Py for the

energy increment of the detonation head is necessarily at
the exponse of combustion-gas cnersgy of stage 2.

Assuming the nonexistence of the adutment at A, the
inertia resistance of the gascs in proximity of A is to
be substituted. Then the gases behind the rarcfaction
front are subject to leftward acceleration - i,e.,, ODPpPO-
site to the gas speed within the head - so that the impulse
law is always complied with. Such leftward motion of the
combustion gases in staze 2 is followed by a drop 1in pressure
P, relative to the pressure with fixed abdutment.

But a drop in P, calls for a decrease in temporal

rise of gas momentum within the head; i.e., the head length
would increase less rapidly in time or, ultimately, the
speed of the rarefaction front would more closely approach
the speed of the detonation front. This fact is of impor-
tance for the effect of the explosive, as will be shown
later on.

In the following, the quantitative calculation of the
speed of the rarefaction front with fixed abutment A 1is
carried out. It could also be made for absent abutment,
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although not without difficulties because of the nonuniform
.processes., Since, as ascertained qualitatively, the ex-
istence of material speed behind the detonation front is
possidble by the energy law as well ag the impulse law in
case of an extension of the concept regarding the further
destiny of the combustion zases, equations (21) and (22),
established for detonation speed and material speed, will
be considered applicadle,

Assume that figures B5¢ and 54 are instantaneous photo=-
graphs of the detonation process with a time interval of 1
seconde While within this interval point H of the deto-
nation front has reached by quantity D the point G, the
voint C of the rarefaction front has traveled the dise—
tance w to point X. Consequently, the difference of the
head lengths CH and XG after 1 second, is D - w. The
increment of the mass of the head is

%—(D—W)

As this mass moves at material speed 1u, the rise in
momentum of the head per second ig

p
- (D -~ w) v

This rise must equal the effective pressure differcnce at
both ends of the head. This gives the impulse equation
(py << p,):

I1
- 4
Pe = (D - w) u (3 )

Each second the latent energy Po P U 1is transformed

into potential and kinetic gas energy of the combustion
gasess New energy forms per second, are: potential gas
energy in stage 2, of the<ord§r of

P, w (1~ a, p,)
k-1

the potential gas energy at stage 1, of the order of

p, (D= w) (1 ~a, p)
kK - 1




26 N.AsC.A. Technical Memorandum No., 899

and the kinetic gas energy at stage 1, of the value of

55 P, (D = W) ue
Hence,
DU - 21 (D-w) (L -, P,)
Po - k - 1
p, W (L =-a,p) 1 .
+ - [T +§gp1 (D-"W‘)'ll

or (equation 14)

il

Po Df=p (D=w)(l~a p)

+p, w (1 =, P,) (35)

E -1 - 2
+ 5a P, (D = w) u

The law of preservation of mass for an observer sit-
ting in the rarefaction front gives:

pp w=rp (w=u) (26)

The solution of the variables w, Pys %y and Pg in
equations (34), (35), and (36) is contingent upon «,.

In the detonation of gaseousg explosives, the covol-
umes o, and o, are negligible, hence w can be com=-

puteds For gasesg, it is:

whereby K(k) is a function of %k only:

5.k + /(5k = 1)° + 8k (x + 1)
4 (k + 1)

XK(k) =

Putting k roughly at l.2, we have:?
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Py .~‘M’»4~‘”—M\~_““"~v—m—
K(k) = 0.8  and w = 0,8 D

o .
- fan DRRESEIRES SRS S e

The speed of the rarefaction front in gases 1s thus
only about 20 percent lower than the detonation speed or,
in other words, the head length amounts to about 20 per-
cent of the distance covered by the detonation front,.

(

T

For solid or liguid explOSives whose covolumes N
and a, are not’ negligidble, w can be computed in the

following manner. As shown by A. Schmidt (reference 9),

the covolume a, of the combustion gases, is a function

of the gas density p and, éonsequently, of the original
density p, of the eiplosive. He illustrates this rela-

tionship as following from detonation-speed measurements
for different explosive densities with curves and arrives
at a decrease in covolume for increasing gas density, which
scems extremely likely.

Now the covolume is not only dependent on the density
but, with constant density, on the temperature as well.

Visualize a molecule heap of great density dut low
temperature. Then the individual molecules penetrate into
their common action spheres merely as a result of their
need for space (deformation of "molecule enveloves"). If
a rise in density is accompanied by constant temperature,
the depth of penetration ig greater; that is, the covolume
becomes legs. If, with constant density, the temperature
is increased, the molecules - as a result of their then-
increased kinetic energy - penetrate still deeper into the
envelopes of their neighbors with a further reduction in
covolume as & result.

Hence, the factor best suited to describe, as sole
independent wvariable, the behavior of the covolume of a
gas, is the pressure because it is, according to the phase
equation, proportional to the density as to the temperature,

The relation o = « () obtained, say, for a certain
gas, may therefore suffice to define the magnitude of o

when ©p alone is known. This functional relationship be-
tween the pressure and covolume of a certain explosive

a = o (p) (38)

can also be established from detonation-speéed measurements
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for different explbsive densities. . The covolume «a, 1is

golved according to equation (22), and the correlated
pressure Dp,, according to eyuation (28)., Several pairs

then give the desired curve o = o (D).

' Following this preparatory step, the speed of the
rarefaction front is calcnladle, since the magnitude of
a, 1is now defined by the existing Dpressure DPye. The four

available equations, (34), (35), (36), and (38) contain
the four variables w, Dp,, ay, 4nd P,e. An explicit calcu-

lation of w would give an expression too complex to han-
dle. Much quicker results are obtained when computing p2

according to (36), ahd ®, according to (34) for an as—
sumed w. The & = al(p) curve gives the correlated aaﬁahm
for p,. These four variables must satisfy equation (25).

The process is repeated,

The temperature T, behind the rarefaction front fol-
lows from the phase equation at

- ——

/1
Py \5; - aa>

The quantities in the detonation of trinitrotoluene
of density 1.59 kg/liter are now computed by means of the
developed equations, on the basis of Friedrich's test
data of detonation speeds at different densities quoted by
A. Schmidt,

TABLE I

Detonation speed of trinitrotoluene in relation to
density according to Friedrich

Density Detonation speed
P, (kg/liter) D (m/s)
1,0 4,700
1,29 5,900
1.46 64500
1.59 6,900
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The heat content is:

= 1,085 (cal/xg)

U

it

4,63 x 105 (m kg/kg) or (m)

According to H. Kast (reference 11), the powder con-
stant f of trinitrotoluene is

f = 8.08 x 10% (m)

hence the exponent of adiabatic expansion, according to
equation (14):

ko= 1 + % = 1.175

(For U the total heat volume, strictly speaking, should
be set up to absolute zero point; but the error caused

by referring the recorded heat content to 0° ¢. may be ig-
nored.,)

Equation (21) gives the speced of the combustion gases
(g = 9.81L (m/z2))

u = 855 (m/s)

The factor % or the covolume Ay is obtainadble
from equation (23) for the different detonation speeds,

while the detonation pressure follows from equation (16).

Table II contains the valucs thus obtained fron
Friedrichs! measurements, '

TABLE II

Covolume o, and detonation pressure p, of trinitro~
toluene according to the developed equations

Detonation speed " Covolume Detonation pressure
D (m/s) o, (liters/keg) p (kg/cm2)
4,700 .. 0.60. ~ 4.09x10%

5,900 .53 6.62x10%
6,500 .49 8.27x10%
5,900 W46 . 9,55x10%
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The association between covolume and pressure a = al(p),
taken from this table, is graphically shown in figure 6.

The explosion pressure is, according to (11)
pg = 7.18 X 104 (kg/em?)

Since its solution is contingent upon the knowledge of oap,

the calculation must proceed on the basis of the now-known
function o = a(p). The correlated covolume is

ag = 0.517 (liter/ kg)

The detonation pressure of trinitrotoluene of density
1.59 kg/liter is thus adbout 30 percent higher than the ex-
plosion pressure which, for gaseous explosives, would amount
to 100 percent. The density of the detonation gases behind
the transformation zone follows from eguation (31) at

P, = 1.82 (kg/liter)
and the explosion temperature from equation (12) at

me = LM
g = =3

or, since the molecular weight M = 32.72,

— o . = 0
Ty = 3,120° K.; Ty = 2,847° C.

The detonation temperature is, according to (33)

= 5,380° x.; T = 3,107° C.

T, = 1.08 Tg; T L

1 1

These quantities are compared with Schmidt's findings.

Except for T the agreement is good. The values
1

for the phase quantities behind the rarefaction front are
obtained by approximation.

Table IV gives the quantities involved in the detona-—
tion, along with the explosion guantities for comparison.
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Comparison oficoﬁpﬁted'défdﬁééiﬁﬁﬁdﬁéhgéfiéé’of
trinitrotoluene of 1.59 kg/liter density and

6,900 m/s detonation speed

Calculated accofding to

Detonation
quantity Autho?'s Chapmgn's
equations equations
k 1.175 1,16 -
u 855 891 (m/s)
o, 0.46 0.45 (liters/ksg)
D, 9,.55x10¢% 9,65%x10% (kg/cm?)
P, 1.82 1.83 (kg/liter)
[e]
Ty 3,107 3,630 (7c.)
TABLE IV

Quantities involved in the detonation of trinitrotoluene

of 1.59 kg/liter density

Detonation
quantities

Notation

Value

Density of solid explosive Po
Detonation speed- D
Explosion pressure by
Covolume of explosion

Pressure 1295
Explosion temperature Tq
Exponent of adiabatic ex-

ransion . k
Material speed of combusg-—

tion gases behind deto=

nation front u

Detonation pressure P,
Covolume behind detonation '

front by
Combustion-gas density behind

detonation front ' P
Detonation temperature T,
Speed of rarefaction front w
Pressure behind rarefaction

front r,

(Continued on p. 26.)

1.59 (kg/liter)
6,900 (m/s)

7.18x10% (kg/cm?)

0.517 (literfkg)
2,847 (°5.)

1.175

855 (m/s)

9.55x10% (kg/em?)

0.46 (literfkg)

1.82 (kg/liter)
3,107 (°c.)
3,720 (m/s)

5.03x10% (kg/cm?)
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TABLE IV (Cont.)

Quantities involved in the detonation of trinitrotoluene
of 1.59 kg/liter density

Detonation Notation Value
guantities

Covolume behind rarefaction

front g 0.58 (Liter/kg)
Gas density behind rarefac-
tion fromt o, 1,40 (kg/liter)

Temperature of gases behind
rarefaction front T, 2,350 (9C.)

The obtained values are illustrated in figure 7. A
striking feature is the great distance of the two fronts,
amounting to almost 50 percent of the travel of the deto-
nation front as compared to about 20 percent for gaseous
explosgives.

According to figure 7c, the material speed u pre-
vails only between the two fronts, dut is zero in the qui-
escent explosive and during the terminal stage of the com-
bustion gases. Figure 7d gcives the energy density along
the detonation path, with gllowance for the potential as
well as the kinetic gas energy. The shifting of the energy
into the detonation hcad is plainly seen. The integral of
this energy distribution must naturally equal the total
latent energy of the explosive releagsed by the detonation
front F,. Figure 7¢ illustrates the effect of the mass.
Here algo the integral of the mass distribution must agree
with the total mass of explosive engendered by the detona-
tion.

Table V gives the individual energies for a column of
explosive of 1 cm?2 section and D 1length at detonation.

The sum of the total energy of the detonation head
and of the potential enerzy of the residuval combustion
gases behind the rarefaction front is numerically equal to
the latent energy., Consequently, the total energy of the
head is 60 percent of the latent energy of the explosive
involved in the detonation. Theredby the kinetic energy
“within the head is considerably smaller than the potential,
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TABLE V

" Distribution of energy 'in a detonating
trinitrotoluene column of density 1.59 kg/liter and length D

. o o Magnitude
Energy form (n ke)

Latent energy 5.08x10°

Potential energy of detonation head ‘ 2.83%x108

Kinetic energy of detonation head . . .22x10°

Total energy of detonation head ' 3.05%x108
Potential energy of gases ©behind rare-

_faction front ' 2.02x10°

DEDUCTIONS FOR THE CONCEPT OF SHATTERING POWER

Following proof of the existence of a detonation head
of increasing length in time as sequence of the physical
fundamental laws, the gquestion of shattering power of an
exn1051ve is discussed.

Visualize at B (fig. 5) a steel plate hit vertical-
ly by the detonation front F,.

R. Becker holds the detonation pressure pl respon-
sible for the effect on the steel plate. But a pressure
alone cannot be decigive for an effect. 4Assume a closed
bomb of very small volume under high pressure D, . Owing
to the pressure, the walls expand and the pressure drops
immediately to a fraction of the initial value, since the
small energy storage is not able %to maintain the initial
pPressure permanently.

While the pressure alone is decisive for the effect
on absolutely rigid walls, the magnitude of all effects
exerted on deformable bodies (i.e.,, all actually existing
bodies) is contingent upon the available energy.

Take a closed bomb of large content filled with a gas,
the pressure of which is lower than the tensile strength
nf the bomdb walls, the potential gas energy being suffi-
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cient to withstand the work of deformation. Even then the
effect obviously will be zero, on account of the low pres-
sure.

The shattering effect therefore does not increase with
the available energy only but also with the height of the
pressure.,

The basis of our concept of detonation process now
suggests consideration of the total energy of the detona-
tion head as energy reservoir for a shattering effect,
while the effective pressure is equal to the detonation
pressure P,. (The increase in hitting pressure due to

the combustion-gas momentum is negligible.)

But the head energy is a function of the amount or
volume of detonating explosive. Denoting this energy of a
detonating explosive of 1 cm section and 1 m length with
Bx, we find for the cited trinitrotoluene

B, = 4,22 x 10% %—1‘—3—
X em 2

However, this head energy Ex of a certain explosive

volume cannot ag yet be a fitting term for the shattering
power, because the dctonation pressure itself must, as
gualitatively deduced, be present. The higher the detona-—
tion pressure, the hicher the detonation sgspeed and the
smaller the time interval necessary o course through a 1-
meter column. If this time is t = = (s), the shatter-

D
ing power B of an explosive appears to be adequately ex-

pressed by

which presents the shattering power by an energy per vol-
ume per time; i.e., performance per unit volume. Substi-
tuting the kilowatt and liter for m kg/s and cm2 m, re-
gspectively, wc have

B =Eg D (kw/liter) (40)

Thereby the head energy Ex for an explosive of l-meter

length and 1-liter volume, i.e., 10 cm? section, is com-
puted in the described manner.
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The shattering power could equally be referred to the
unit weight:of -the explosive. but since .in practice a cer-
tain volume is available for an explosive, the unit vol=

ume is more appropriate,

For trinitrotoluene of 1.59 kg/liter density, it
gives

B =2.98 x 107 (kw/liter)

It is readily seen that the shattering effect of an
explosive is essentially contingent upon the detonating
guantity rather than upon the data of detonation pressure
only, which is not dependent on the gquantity of material.

In the absence of abutment 4 (fig. 5), the zases in
stage 2 move under pressure decrease, opposite to that of
the rarefaction front. The rarefaction advances faster as
a result of this pressure decrease.

After a certain detonation path, the distance of both
fronts therefore is smaller without than with A. Hence,
since the head energy, despite the constant detonation
pressure, is dependent on A, it is readily apparent why
the effects of exnlosives in the dammed-up stage arc great-
er than those in the freec stace.

CONCLUSION

In conclusion, we shall analyze the detonation mech-
anism, The accord of the detonation speed derived from
the minimum condition with practical experience suggests
the assumption that the magnitude of detonation gpeed 1is
actually dependent upon the macroscoplic quantities only,
such as heat content, explosion pressure, etc., whereas
the physical state of the individual explosive particles
ig unimportant, as exemplified by the quality of detona-
tion speed of go0lid and liquid explosives of the same den-
sitye

The rcaction process, whiech in explosions and combus— §
tions defines the linear speed of transformation, plays no
part at all in the phenomenon of detonation.

It may therefore be assumed that the explosive before
the detonation front is at a stage independent of its ini-
tial physical state. The author, in consequence, assumes
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that the radiation of the gases of combustion is sufficient
to activate a thin layer of the explosive before the deto-
nation front and here create the explosion pressure py

and the explosion temperature Tg. (Then the magnitude of

the detonation speed is given only by .the propasgation
speed of a shock wave in a gas of pressure Dpyg and temper—

ature TE) C@hat this speed of propagation is greater than

the normal velocity of sound in this gasg, is the result of
the high amplitude of the shock)

A molecular-kinetic analysis of the detonation phenom-
enon (reference 12) can be made backward from the already
‘available thermodynamic data precisely as the nature of the
velocity of sound on the basis of the known thermodynanmic
formula was recognized as the quantity of the melecular
speed of the particular gas multiplied by a certain con-
stant.

Translation by J. Vanier,
National Advisory Comnittee
for Aeronautics.
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